4 research outputs found

    Mobile 5G Network Deployment Scheme on High-Speed Railway

    Get PDF
    The fifth-generation (5G) wireless communication has experienced an upsurge of interest for empowering vertical industries, due to its high data volume, extremely low latency, high reliability, and significant improvement in user experience. Specifically, deploying 5G on high-speed railway (HSR) is critical for the promotion of smart travelling such that passengers can connect to the Internet and utilize the on-board time to continue their usual activities. However, there remains a series of challenges in practical implementation, such as the serious Doppler shift caused by the high mobility, the carriage penetration loss especially in the high-frequency bands, frequent handovers, and economic issues. To address these challenges, we propose three schemes in this article to improve the coverage of 5G networks on the train. In particular, we provide a comprehensive description of each scheme in terms of their network architecture and service establishment procedures. Specifically, the mobile edge computing (MEC) is used as the key technology to provide low-latency services for on-board passengers. Moreover, these three schemes are compared among themselves regarding the quality-of-service, the scalability of service, and the related industry development status. Finally, we discuss various potential research directions and open issues in terms of deploying 5G networks on HSR

    Diagnosing Robotic Swarms 2 (Dr. Swarm2)

    Get PDF
    Robots are envisioned to work alongside humans. However, humans struggle to interpret the state and goals of a robot. The use of multiple robots further exacerbates this issue. To solve this problem, we propose Dr. Swarm 2, an augmented reality (AR) application built on the Magic Leap. The overlay provides concise information in a manner unachievable with existing methods

    Mobile 5G Network Deployment Scheme on High-Speed Railway

    No full text
    The fifth-generation (5G) wireless communication has experienced an upsurge of interest for empowering vertical industries, due to its high data volume, extremely low latency, high reliability, and significant improvement in user experience. Specifically, deploying 5G on high-speed railway (HSR) is critical for the promotion of smart travelling such that passengers can connect to the Internet and utilize the on-board time to continue their usual activities. However, there remains a series of challenges in practical implementation, such as the serious Doppler shift caused by the high mobility, the carriage penetration loss especially in the high-frequency bands, frequent handovers, and economic issues. To address these challenges, we propose three schemes in this article to improve the coverage of 5G networks on the train. In particular, we provide a comprehensive description of each scheme in terms of their network architecture and service establishment procedures. Specifically, the mobile edge computing (MEC) is used as the key technology to provide low-latency services for on-board passengers. Moreover, these three schemes are compared among themselves regarding the quality-of-service, the scalability of service, and the related industry development status. Finally, we discuss various potential research directions and open issues in terms of deploying 5G networks on HSR
    corecore